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Abstract

The influence of surface cooling on compressible boundary-layer instability is dis-

cussed theoretically for both viscous and inviscid modes, at high Keynolds numbers.

The cooling enhances the surface heat transfer and shear stress, creating a high-

heat-transfer sublayer. This has the effect of distorting and accentuating the viscous

Tollmien-Schlichting modes to such an extent that their spatial growth rates become

comparable with, and can even ezceed, the growth rates of inviscid modes, including

those found previously. This is for moderate cooling, and it applies at any Mach num-

ber. In addition, the moderate cooling destabilizes otherwise stable viscous or inviscid

modes, in particular triggering outward-traveling waves at the edge of the boundary

layer in the supersonic regime. Severe cooling is also discussed as it brings compressible

dynamics directly into play within the viscous sublayer. All the new cooled modes found

involve the heat-transfer sublayer quite actively, and they are often multi-structured in

form and may be distinct from those observed in previous computational and experi-

mental investigations. The corresponding nonlinear processes are also pointed out with

regard to transition in the cooled compressible boundary layer. Finally, comparisons

with Lysenko and Maslov's (1984) experiments on surface cooling are presented.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1. INTRODUCTION

Surfacecooling is fairly often applied on supersonic-hypersonicflight vehicles, and in

somecasesit is essentialfor the preservationof the vehicle itself, especiallyat higher Mach

numbers.The effectsof suchcoolingon the instability and transition properties of the local

compressibleboundary-layerflow arethen of muchconcern. Given the practical importance,

it is perhapssurprising that therearenot moreexperimental,theoretical and computational

studies of surface-coolingeffectson instability and transition; seethe experiments of Van

Driest and McCauley (1957), Wisniewski and Jack (1960), Richards and Stollery (1966),

Stetson and Rushton (1967), Van Driest and Blumer (1968), Kendall (1975), Demetriades

(1978), Lysenko and Maslov (1981,1984), and the theoretical suggestions and computations

of Lees and Lin (see Lin 1955), Reshotko (1963), Mack (1969,1975,1984,1986), Maslov (1974),

Oapanov and Maslov (1980), Malik (1987). The flow phenomena produced can be complex,

and the findings and suggestions from the works above are a little mixed, but Lysenko and

Maslov (1984) seem to provide a reasonable overall summary, namely that the so-called first

modes tend to be stabilized by surface cooling whereas the second modes are destabilized to

a limited extent. Also, islands of first-mode instability have been predicted by parallel-flow

theory at the lower Reynolds numbers, although these suggestions are questionable due to

the nonparallel-flow effects present then: see also later.

The present theoretical investigation, in comparison, suggests that the effects of surface

cooling can be much more pronounced and "dangerous." In particular it is found that the

cooling, even if only moderate, so distorts the viscous-inviscid Tollmien-Schlichting (TS)

modes [first modes] that their spatial growth rates can become comparable with or larger

than those of the inviscid modes [second and higher modes] described above, at high Reynolds

numbers. This reversal of the usual ordering of the instabilities arises because of the enhanced

heat transfers and shear stresses produced in the basic boundary-layer flow at the surface

by the presence of cooling, which results in a sublayer of high heat transfer emerging on the

surface. The increased surface shear stresses cause the typical viscous-inviscid TS wavelength

to be decreased and the flow structure associated with the TS wave is soon altered, as the

surface is cooled, bringing about the rise in growth rates, as well as rendering previously

stable modes unstable.

The present predictions appear to agree broadly with Lysenko and Maslov's (1984) sum-

mary finding above, and with their experiments for supersonic boundary layers (see also

the comparisons in §6 below), in that the wavenumbers and frequencies associated with the

boundary-layer's first-mode instability increase with surface cooling, at a given Reynolds

number. There is however some possible disagreement as well (which may be a matter of

interpretation) in the sense that the theoretical growth rates increase also, as described in



the previousparagraph. Thus the prediction here is that, with cooling, instability may be

delayedbut when it occurs it is likely to be more violent than in the non-cooled,e.g. insu-
lated, case. This is mainly for the viscous-inviscidfirst modes,but similar findings emerge
for the inviscid secondmodesalso as discussedlater.

"Moderate cooling" of the surface, and its influence on the compressible viscous modes, is

dealt with in §§2 and 3 below, based on the theory in Smith (1987). The new flow structure

produced is examined first, followed by its instability properties. The flow structure is of

the compressible Rayleigh inviscid kind across the majority of the boundary layer, but in a

quasi-steady form, which admits pressure-displacement interaction with the viscous sublayer

response. Unlike the non-cooled TS instability modes, which in supersonic flow must be

directed outside the wave-Mach cone, i.e. be effectively subsonic, the present surface-cooled

ones can be unstable for any obliqueness angle, including the two-dimensional (2D) case.

This and other factors of the link between the cooled and the non-cooled TS modes are also

explored in §3, along with the influence of cooling the surface beyond the moderate stage.

There the spatial growth rates become still more accentuated, for any Mach number, as the

viscous-inviscid disturbance is concentrated relatively near the surface, and flow-structural

change re-occurs. We devote a separate section, §4, to the resulting stage of %evere cooling",

to emphasize its novel nature. This concerns principally the intrusion of compressibility

effects into the dynamics of the thin viscous sublayer. Although the work overall is mostly

on viscous modes, pure inviscid modes are addressed in §5 as a result of the behavior found

earlier in the moderate-cooling regime. Once again, cooled-surface modes which appear to

be distinct from those found in earlier studies are implied, for any Mach number M_o, with

the heat-transfer sublayer playing an active part throughout. The new inviscid modes, like

the viscous ones of §§2-4, all have relatively small phase speeds, and they include some which

radiate, i.e. provoke outward-traveling waves at the edge of the boundary layer.

Nondimensional variables are used such that the freestream velocity is (u, v, w) -- (1, 0, 0),

in cartesian coordinates (z, !/, z) where the airfoil chord is unity. The nondimensional pres-

sure, density, temperature and viscosity are written p, p, T,/z in turn, equal to Po_, 1, 1, 1 in

the freestream, where p_ = 1/(_M_), and _ denotes the usual convectively scaled time.

The basic boundary layer then has O(Re -1/2) characteristic thickness where Re is the global

Reynolds number produced above and the boundary-layer properties are defined by the pro-

files (u,T,p) = (Vo, To, po)(Y), with y = Re-I/2y, at the local station x = Xo, Z = Zo under

consideration. In §§2-4 nonlinear viscous-inviscld interactions are considered first since the

understanding of flow transition is the ultimate theoretical goal, although linear solution

properties are then treated, as a first study, since this type of approach for surface cooling

appears to be a fresh one. The corresponding nonlinear inviscid _zersions in §5 can like,:ise



be set up. Further discussion is presented in §6, along with some comparisons with the

experiments of Lysenko and Maslov (1984) and related comments.

2. THE MODERATE-COOLING REGIME

For order-one values of the temperature ratio T,_/T_(= Tw) the compressible three-

dimensional TS modes are controlled by the triple-deck structure as described by Smith

(1987), as long as the other parameters involved are not too extreme. That structure pro-

vides the springboard for the present theory on surface cooling and so its underlying form is

noted here. The expressions for the flow solution in the three decks are:

upper deck, y = Re-3/SKlm-1/Zy_, and ]

[.,,_,,_,,v]= [1,0,0,Voo]+ R_-'/401/"_,'/_..-'/"[d_),.-Y_¢_),_),_)];
(2.1a)

main deck, y = Re-ll2y and

[_,_,_o,v]= [Uo,0,0,pool+ O[Re-'Is, Re-'/_, R_-'/_, Re-I/fl;
(2.1b)

lower deck, y = Re-51Sm-llSCS/ST_/2A-a/4y* and

'71. "I, "Hi "n] -- [Rp-1/8('7,1/STI/2_I/4_,_-I/8]'T * ]_o-3/8p. 3]8cp1]2"I3/4_,_1/STf* } (2.1C)
_-1/8r1/8T1/2 _ l/4_-I/8Vt]'* Rp-1/4_.l/4 ]i1/2_,r_-1/4 p*].

throughout, the streamwise and spanwise length scales and the time scale are given by

(z - Xo, Z- Zo) = Re-3/SKx(X*,Z*), _ = Re-'/%n-U4T_,GU4A-3/2t'. (2.1d)

Here rn ---- IM_ - 1[, and P and -A are the unknown pressure and displacement variations

(independent of _', Y*), C is the Chapman constant, 1(Zo, Zo) is the O(1) skin-friction coef-

ficient of the incident compressible boundary layer and (zo, z0) is the local position under

consideration, while K1 = CS/ST_/2A-S/4rn -sIs. Similar expansions hold for the temperature

T, the density p and the viscosity/_. As a result the overall nonlinear three-dimensional TS

behavior here is governed by the lower-deck equations and boundary conditions,

ui. + v_. + w_. =o, (2._.a)

U;. + U*U_:. + V*U_.. + W*U_. = -P_c.(X*,Z',t*) + U_..v,, (2.2b)

w:. + u*w;_. + v'w;.. + w*w_. = -P_.(x*,z*,_*) + w_.y., (2.2c)

U* = V* = W* = 0 at Y* = 0, (2.2d)

U* ,._ Y* + A'(X',Z*,t*), W" ---+O, as Y* _ oo, (2.2e)
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coupled through pressure-displacementinteraction with the upper-decklinearized potential

flow problem (for supersonicand subsonicflow respectively)

where

[(M£- i)@,. T - : O, (2.2f)

0 asvu oo; p,, Ax.x. as 0+. (2.2g)

Suitable constraints at large IX*], IZ*l, are also assumed, and imposed forcing can be incor-

porated in either or both of the parts (2.2a-e), (2.2f, g). Various nonlinear features of the

unsteady viscous-inviscid system (2.2) for nonlinear TS evolution are addressed by Smith &

Walton (1989), Smith (1988, 1989) among others, while the linearized version corresponding

to relatively small compressible TS waves is studied by Smith (1987). Here we follow the

same procedure of setting up the nonlinear stage first and linearizing afterwards, in dealing

with surface-cooling effects.

The main impact of surface cooling, i.e. small T_,, is felt partly through the T_, factors

themselves in the scales above and partly through the alterations in the mean-flow profiles

Uo, To near the surface, specifically in the large heat transfer and skin friction produced there.

This can be seen in two ways. One is by means of the Howarth-Dorodnitsyn transformation,

Y' = fo Toldy, since Uo, To are regular in terms of the transformed variable y'. So if T_, is

reduced then initially To oc y' at srnall y' with an O(1) constant of proportionality. Hence

the transformation implies that _ oc fo Tody' is quadratic in y', and therefore the temperature

profile To is tending to zero like the square-mot of the normal distance y. The same applies to

the velocity U0. That implies large temperature and velocity gradients developing near the

surface. The precise size of these is determined by a sublayer produced where y is O(T_), or

y' _ T_, and the low surface temperature becomes comparable with the linearly decreasing

(in terms of y') contribution above, so that To _ T,_ + y' times O(1), i.e.T_, + O(1) times

[y + O(1)]_/2. It follows that the surface heat transfer, aTo/Oy at y = 0, is O(Tj _). Likewise,

the surface shear stress is O(T_,_). The alternative is to consider the basic-flow momentum

and heat-flux equations, which are dominated by their viscous contributions near the surface

at small y, i.e. by c3(#ocgUo/cgfl)/OT/= 0 and a(#o¢gTo/afl)/cgfl = 0 respectively. Since #0 oc To

for a Chapman fluid (see also later) the second balance above integrates to give ToaTo/cgft

uniform in _ and hence To2 is linear in ._; so again the almost square-root response in the

temperature To and the large O(Tw _) heat transfer c0To/¢3_I are implied at small _ and T_.

Similar results for [To stem from the momentum balance above. The effect of surface cooling,

then, is to induce a new sublayer in which, for certain O(1) constants Cl, c2,

2 ^ C2

f/= T,_y, To = T,_(1 + 2c_) 1/2, Uo = T,.--{(1 + 2qf/) _/_ - 1}, (2.;_a)
Cl
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and in consequence the scaled heat transfer and skin friction

(OTolO ) _o". T:,'c,, .X- (OUola )r,=_o,., (2.3b)

are increased substantially.

The implications for the TS waves follow directly from the increase in A in (2.3b) and the

decrease in T_. Thus the TS length scales of (2.1a,c,d) all shrink now, as might be expected

physically, and in particular the streamwise length and the maximum normal distance both

decrease like T_/2. Similar deformations occur in the typical lower-deck thickness and in

all the velocity and pressure scales, for instance, and eventually a new flow structure must

come into play as T_ continues to drop. Various options present themselves but the first

distinct new structure is found to arise when T_ is decreased to the order Re -i/i2, at which

stage the upper-deck extent becomes coincident with the main boundary layer's, as does

the streamwise length scale. So novel elliptic effects must then enter the boundary-layer

dynamics.

In the new stage of "moderate cooling", therefore, we have

T,,, = Re-'/l_f'_,, (2.4)

say, with T_, typically of order unity, and a three-tier structure comes into operation. See

Figure 1. The scales and balances involved are suggested by the ones mentioned earlier but

combined with (2.4). Across most of the boundary layer, the main tier where _ is O(1) is

given by

[u,v,w,p,p,T]= [Uo, O,O,poo, po, To]+ Re-'/4_c2a[_z,v,w,p,_,'T]+'" (2.5)

with c3 --- (C/_p_) i/3, while in the buffer tier where y = Re-2/3_l

[u, v, w,p,p,T] = [Re-i/12_ + Re-i/Sc3.]t_',-Re-1/3c3ftx£z, Re-i/4_2c23D/£z ,

poo + Re-'/4p_2c]P, Re'/l_p, Re-1/'2_',,,],

to leading order, with Dx = -Pz, and in the lower tier y = Re-31'lc3Y with

(2.6)

[u, v, w,p,p,T] = [Re-'/SJ, c3U, Re-5/12Ac]V, Re-'/6_tc_W,

p_ + Re-'14j_2c_P, Re'll2j, Re-ill2_',,,]. (2.7)

Here the extra factors C, _(-- presentare all O(1) and are included to pro-

duce a normalized equation set below, taking account of the scaled surface density, viscosity



and shear values which would otherwise appear in the lower-tier system for example. The

streamwise and spanwise length and the time scales now are defined by

Re-1/3_.

- xo,z- = t = ic3 (2.8)

Hence the main-tier properties are controlled by the linearized quasi-steady inviscid balances

Po_x + _xUo + po_v + p% _ + Po@z = O, (2.9a)

Uo_x + _Uo, = -Px/po, (2.9b)

Uo(Ox, ff_x) = -(P_,, Pz)/po, (2.9c)

Uo(po_x - 7Poo-Px ) = _/poopo_, (2.9d)

leading to the compressible pressure equation

P_ + Pzz + (1 - M2o)_xx = 2M%_y/Mo, (2.10a)

with effectively zero phase speed. Here Mo =- UoM_/T_/2. The constraints on p are

t5 --. 0 [or outgoing waves] as ._ --, 0% (2.10b)

2 3"2

P "_ P + -_'Axx_ / as 9 _ 0+, (2.10c)

together with appropriate boundedness conditions far upstream and downstream (see below),

where (2.10b) reflects the match with the oncoming undisturbed free-stream motion and

(2.10c) is necessary for merging with the buffer tier. The 3/2-dependence in (2.10c) comes

from analysis of (2.10a), given that the basic-flow profiles U0, To exhibit the square-root

dependence

Uo "., c2(2/c,)a/2_ a/2, To ,-, (2cx)l/_fl'/2, as ._ -_. 0+, (2.11)

consistent with (2.3). The O(1) parameter r introduced in (2.10c) is defined by

c12/321/2_'_

-r= c_/2C1/3 , (2.12a)

for consistency with the buffer tier below. Again, the associated velocity perturbations

respond in the form

(_, _, @) ,',, ([1-_/2,[/_/2, 0(1)), (2.12b)

at small _, agreeing both with (2.10c) and (2.6). The buffer tier of (2.6) is also governed by

predominantly inviscid linear dynamics but it accommodates the basic inner-layer behavior

(2.3a), thereby smoothing out the 3/2-dependence, since the velocity profile

_(_) = c2[(_ + 2c11_)_/2 _ _,,,], (2.13)
Cl



is regular. The final, lower, viscous tier of (2.7) then yields the three-dimensional unsteady

nonlinear boundary-layer equations,

Ux + Vr + Wz = O, (2.14a)

U_+ UUx + VUy + WUz = -Px(X,Z,i) + Urr, (2.14b)

W_ + UWx + VWy + WWz = -Pz(X, Z, t) + WYr, (2.14c)

subject to the conditions

U = V = W = 0 at Y = O, (2.14d)

U.._ Y + A(X,Z,t), W _ O, asY_oo, (2.14e)

for no sllp at the surface and to match with the buffer tier's response in turn.

The nonlinear system describing moderate cooling is therefore given by the viscous-

inviscid interaction of (2.10a-c) combined with (2.14a-e). A match may be verified with the

earlier structure of (2.1) at large r, corresponding to large T_o, and certain extra aspects of

this are examined in the next section. Of most concern here are the properties of the new

cooled-surface TS system at O(1) values of r and the effects of the inviscid but rotational

elliptic part (2.10) of the interaction, which represents the major new feature present in the

moderate-cooling regime. Further, small-disturbance properties can be of much interest, for

practical and other reasons including the fact that the length scales and hence the spatial

growth rates expected are now comparable with those of pure inviscid modes, and so we

address here the linearized instability version in which (U, V, W, P, A, p) are taken to be small

perturbations of the basic undisturbed state (Y, 0, 0, 0, 0, 0). This has the effect of keeping

(2.10a-c) intact but with the lower-tier response becoming linearized. In consequence cool-

surface TS waves o( exp(i(aX+flZ-fl t)) are possible with wavenumbers a, fl and frequency

Ft, in which case we are left with solving the quasi-steady compressible Rayleigh equation

if, 2M'0,
_ _M__o_ _ [a_(1 _ Mo2) + f12]_ = O, (2.15a)

subject to

and
P

A

p _ 0 [or outgoing waves] as _" _ co,

2 2 "-3/2

~ P - _ra Ay " as_'--*0+,

(2.15b)

(2.15c)

(ia)-1/3 Ai'(_o) [_o=___il/3f_/a2/3_=_[_'Ai(q)dq'_. (2.15d)
(i + f12/a2) _;(_o) ' k J(o ]

In (2.15a) the prime denotes a _- derivative, while (2.15d) stems from the viscous linear

lower-tier solution in terms of the Airy function Ai. The properties of the moderate - cooling

system (2.15) are investigated in the next section.
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3. INSTABILITY PROPERTIES FOR MODERATE COOLING

Solutionsof the moderate- cooling problem(2.15)wereobtained (a) by computation, (b)

analytically for small¢, (c) analytically for large r, connected with relatively high frequencies,

and these are described in turn below. In practice, some of the features found in (b), (c)

were used to guide the computations in (a), and vice-versa.

3(a). Computational Study

For moderate values of the Mach number we chose the mean-flow profiles U0 and To to

have the following representative forms:

U0 = 1 - e -V/2, (3.1a)

To = 1 - e-V/2, (3.1b)

i.e. they have the required square - root dependencies as _ ---+ 0+; the decay as _- _ oo is

of relatively little consequence, we note. Then M0 = UoMoo/T_/2 = Moo(1 - e-¢/2) 1/2, and

the system (2.15) becomes

_' 1--112 e-Y_12 _' -- (or2(1 -- M£(1 - e -ylI') --}-_2)_ = O,
-2Y " 1-e -_/=

(3.2a)

with the boundary conditions

_ 0 (or outgoing waves) as g ---* 0% (3.2b)

2 2 -_'2
,._ P - -_ra Ay i as y 0+, (3.2c)

and

P (ia) -1/3 Ai'(_o) (3.2d)
A = (1+_2/ct_) _(_o) '

where _0 and t¢ are defined by (2.15d). For _ << 1 we may obtain two independent solutions

of (3.2a), with multiplicative constants al, as,

aM_
5 2 2 2

p = a1{1+ (Z' + _)_ - (Z_+ _(1 + 2M_))¢/_ + (i-_(_ + _) + --W--)_ +...}

3 1 _/2 1
+aa{_.a/2_ _ga + ___y . _ _._y +...}, for y << 1. (3.3)

One numerical method used to solve the eigenvalue problem (3.2) is to start the integration

procedure at a small value of g = g, say. Then for non-neutral solutions, for example, we

can fix/3 and guess a, complex, and find two independent solutions for p corresponding



to (al, a2) = (1,0), (0, 1) using a standard 4th order, 4 stage Runge-Kutta scheme. The

integration is continued to a large value of y, y_ say, where _-,_ exp[-(a2(1- M_)+ fl2),/2_]

and the two solutions Pl and P2 are combined in the form

2 2
_= P_l - _ra P2, (3.4)

where P is defined by (3.2d). Without loss of generality we may choose A = 1. This system

is iterated until the condition

_'(y_) + _(y_) = 0 (3.5)

is satisfied, where "X= (a2(1- M_)+ fl2)1/2 with Re(_ > 0. In another method, to avoid the

possibility of exponential growth in the numerical solution on the interval (6, yoo), the solution

of (3.2a) can be found first from y = 6 to y = y0 (y0 = 1, for instance), choosing A = 1 and

using the asymptotic behavior of (3.3) as initial conditions. Additionally a solution of (3.2a)

may be found from _ = y_¢ to y = y0 using the exponential decaying behavior at y = y_,

and choosing the constant multiplying the solution so that the two solutions are continuous

at y = y0. The condition that p and _ are continuous at y = y0 is sufficient to determine

the complex eigenvalue a for fixed fl, M_, r and _. In some instances, to aid convergence,

a further method was used where it was found useful to map (0, oo) onto (0, 1) by use of

the transformation y = tan(_rs/2). The method of solution in this case can be either of the

two methods described above, since the asymptotic behavior of the transformed equation of

(3.2a) as s ---, 0+ and s --* oo is unchanged (simply replace y by tan(_rs/2)). Each method

described above was found to give results consistent with the other two. Each scheme was

used with different values of 6 and the step length for the Runge-Kutta integration scheme

to test for convergence.

Neutral and unstable solutions of (3.2) were found by using the numerical methods de-

scribed above and are shown mainly in Figure 2; see also in Figures 3,4 later. The behavior

of the solutions was followed as the (real) frequency fl was increased. The neutral solutions

were obtained for two-dimensional and three-dimensional disturbances. It was found useful

to plot the neutral curves for fixed values of fl/a. Figure 2(a) shows the neutral values of r

and F/for M,_ = 0.5 and fl/a = 0, 1, 2, 4. We see that r decreases as f] increases. The neutral

solutions for supersonic flows differ depending on whether fl/a - (M_ - 1)_ is positive or

negative. (The Situation with fl/a = (M_ - 1)_ is not addressed here.) Figure 2(5) shows

neutral values of 7" and fl for M_ = 2 and fl/a = 1.75, 1.5, 1.25, 1,0. For fl/v_ > (M_ - 1)_

the solution for _ is real and decays exponentially as y _ c_. For _/a < (M_ - 1)_ we

allow outgoing traveling waves and so _ is complex and has a purely oscillatory behavior as

---, oo. These two different types of solution produce different forms of the neutral curves

as shown in Figure 2(5). For fi/a > (M_ - 1)½ (fl/a = 1.75) there is no solution for large



valuesof both -i- and ft. For fl/a < (M_ - 1)_ there exists a cut-off value of _ for each

value of fl/a below which there are no solutions. As f_ increases from the cut-off value,

on the upper curve, ¢ reaches a local maximum and then decreases to a local minimum

as _ increases further. Beyond the local minimum the curve has no more turning points

and ¢ continues to increase as _2 increases. We note that the upper curve for the 2D case

fl/a = 0 does have this behavior but because of the scale of Figure 2(b) it is not immediately

apparent. The lower curves become almost coincident as F_ increases, including the cases

/9/a > (M_ - 1)_ for which ¢ continues to grow as _ becomes increasingly small. Thus we

see that there exist neutral (and hence unstable) solutions of (3.2), over a range of r, for all

values of fl for/9/a > (M_ - 1)_ or for any subsonic case, but there is a cut-off value of F/

for each value of/9/a for which/9/a

exist for fl below this value. Figure

/9/a = 1.5, 1.25, 1, 0. The curves for

< (M_ - 1)_ where no neutral (or unstable) solutions

2(c) shows neutral values of a and FL for Moo - 2 and

fl/a > (M_ - 1)_ for the supersonic case and for any

subsonic case are also shown. They are only present on the upper curve where the different

solutions are indistinguishable. For/9/a > (M_ - 1)_ and also for Moo < 1 the pressure

is real, hence, from (3.2d) P must be real also. This implies the well known result that
._ z_ .,.

_0 = -2.298i_ and z ,A, (_0)/'¢(_0) = 1.001. The definition of _0 from (2.15d) determines

a for these cases. We find that a = (_q/2.298)I. Hence, for the cases where this solution is

valid, a is independent of Moo, /9 and r. The two branches of the neutral curves shown in

Figure 2(c) correspond to the asymptotic solutions described later in sections 3(b) and 3(c).

The effects of increasing the cooling of the surface were investigated by decreasing r for

two-dimensional, three-dimensional, subsonic and supersonic (for moderate values of Moo)

disturbances. The trends were found to be the same in all of these cases, namely that

decreasing r increases the growth rate of the unstable solution. This is shown, for example,

in Figure 2(d) for Moo = 0.5,/9 = 1 and r = 0.1,O.05, 0.02, where the growth rate -Irn(a)

is plotted against ft. We observe that the growth rate increases significantly as r decreases

(i.e. when the wall is cooled more). This suggests a large destabilization of the basic flow

as the wall cooling is increased. The results for Moo = 0.5 and/9 = 0 for r = 0.1, 0.05,0.02

are graphically identicaI to the respective results for/9 = 1 shown in Figure 2(d). The real

part of a is very large for these solutions for small values of r. Figure 2(e) shows the growth

rate -Im(a) as a function of fl for Moo = 2,/9 = 1 and r = 0.1,0.05,0.02. The solutions

have the same behavior as those shown in Figure 2(d) for Moo = 0.5 with the growth rates

appearing to be slightly smaller for Moo = 2 compared to those for Moo = 0.5. Again, the

corresponding solutions for Moo = 2 and/9 = 0 are virtually the same as those for Moo = 2

and fl = 1 for the values of r shown in Figure 2(e).

For large values of T the solutions approached those of Smith (1987) as expected [dee
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also (c) below]. For subsonicflows as r increases the solutions for Ira(a) have the same

behavior as those shown in Figure 2(d) with the growth rates continuing to decrease as r

increases. This behavior is found to hold for very large values of T. This is illustrated in

Figure 2(f) where -Ira(a) is plotted against _ for Moo = 0.5, /_ = 0 and T = 0.4, 0.5, 1.

If the corresponding curves for /3 = 1 were to be added to Figure 2(f) they would be

indistinguishable. Figure 2(g) shows -Ira(a) as a function of _ for Moo = 0.5 and/3 = 0

and /3 = 1 for r = 10, 20. The solutions for/9 = 1 and/3 = 0 are now distinct, with the

solutions for/3 = 0 having larger growth rates, the difference increasing as r increases. We

note that as _ increases from zero the three-dimensional mode occurs first.

For supersonic flows, as expected from the neutral curves shown in Figure 2(b), the

structure of the eigenvalue a changes as r increases. An example of this is shown in Figure

2(h) where -Im(c_) is plotted against f/ for Moo = 2 and/3 = 0 for r = 0.4, 0.5, 1. For

0 < r _< 0.4 there is one neutral point at a small value of n. For 0.4 < "r < 1 there are 3

neutral points and for r _> 1 only the neutral point at the largest value of _ persists. Figure

2(i) shows -Irn(c_) as a function of [2 for larger values of r, namely for Moo = 2, fl = 0 and

r -- 5, 10, 17. For the range of r shown in Figures 2(5) and 2(i) the solutions for/3 = 1 are

very close to those shown for/3 = 0. As r increases the growth rate continues to decline.

To summarize the results of the computational study for moderate values of Moo we

can make the following general statements. As the amount of wall cooling is increased

(i.e. as r is decreased) the growth rates increase for two-dimensional and three-dimensional

perturbations, irrespective of whether the flow is subsonic or supersonic. Moreover, as r

is increased, for subsonic flows no significant three-dimensional effects are noticeable until

r >_ 10, with the growth rates here being larger for two-dimensional perturbations. On the

other hand, for supersonic flows with/9/a < (M_ - 1)_ there is very little difference between

the solutions for two-dimensional and three-dimensional flows. Again, for a fixed value of r

the growth rates for subsonic flow are larger than those for supersonic flow.

We also note that, here and below, multiple modes may be present but these have not

been detected as yet.

For large values of Moo the mean flow becomes different in structure. In particular, from

the Howarth-Dorodnitsyn transformation, To "_ M_ so that y ,-, M_, while Uo --" O(1). We

do not present solutions for large Mach number but below is an outline of a representative

problem to be solved in this case. For large Moo we write

_" = YM_, (3.6)

and then

[U0, To, Mo, a] = [U0(Y---), M_T-0(Y), M0(Y--), M_2_], (3.7)
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instead of (3.Is,b), with the over-barredvariables now being typically of order one. The

equation (2.15) thereforebecomes

_ 2M0r_ [_(1 _20)+ _21_ 0, (3.s)
P-_ _00P7- - =

for 0 < Y < Y,, where the scaled boundary-layer edge ]7 is finite in this regime, Mo =

/70Too _, and fl = M_2fl. The boundary conditions near the cooled surface likewise remain

intact, to leading order, with z, P, A al_o scaled appropriately with respect to M_, taking

account also of the extra factors such as cl, c2 involved in the scales of section 2. In particular,
it

the typical wall-cooling factor r required now increases like M_. A logarithmically thin extra

layer near Y= Y. adjusts the solution from To being O(M_) (as above) to being unity as

required in the free stream, and 80 the profiles/70, T0 are to satisfy the conditions/7o --* 1,

7'0 --, 0 as ? --, 700- and/70 ¢, ?_, 7"0 o, ?_ as ? -, 0+.

(b) Small _': towards severe cooling

In line with the computational results, it is suggested that for small values of _- the

disturbance y - scale contracts. So Uo, To are approximately like yl/2 Mo is small of order

y_/, for Moo of O(1), cf. later, and therefore (2.15a) suggests that a is O(9--1), as is ft.

The unknown F-scale is then fixed in termn of 7" by comparing the typical size of P/A from

(2.15c) with that inferred from (2.15d), given that _o is expected to remain typically O(1)

for instability. The implied small-7" response therefore has

= f(_) +...,

(,_,,_)= -,--_/_(a,,_)+ •. •,

p=/5+...

This reduces (2.15) to the equation

for/3, subject to

and

p = "rS/5_, (3.9a)

£ = T-'/6£ +..., (3.9b)

A = r-2/5i i. +.... (3.9c)

PO (3.10a)_ - _ - (a' + ,_')#= O,

2 2 _" 3/2

f(oo)=0, f_~P--saAfI' as_-_O+, (3.10b, c)

^ ..... 1 3 3 ^ ^

f:'lA = (1 + fl'la 2) '(wt) / At (_o)/a(_o), (3.10d)

where _o = -iVafi/&2/a. Here the solution of (3.10a,b) can be obtained analytically,

= dxfta/4K[(y) with y = (&2 + _)_/2fl ' (3.11a)
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dl is a constant, K3/4 is the Bessel function in the standard notation, and then (3.10c)

requires that

P/A =
(r(¼))2(a2+ 32)3/, ' (3.11b)

from the behavior of the Bessel function at small _. So the coupling with (3.10d) leads to

the reduced eigenrelation

A¢(&) ,.^,,/3,.2
4&) -= + , (3.11c)

between &,_. The solution for Re(cx) and Irn(a) from (3.11c) are plotted in Figures 3(a)

and 3(b), respectively, for/5 = 1 and r = 0.1,0.05, 0.02. These are seen to agree well with

the full computations at small values of r; see also in Figures 2(d) and 2(e). In order to

illustrate this agreement Figures 3(c) and 3(d) show Re(a) and Ira(a) for r = 0.05, _ = 0,

for Moo = 0.5 and Moo = 2 from the full computations along with the result of (3.11c). The

agreement is seen to be very close when f_ is not very large.

It is interesting that the small-r response here is independent of the Mach number, as

might be expected for disturbances focussed near the surface. This is because the effective

Mach number M0 is small, so that the contribution M02 in (2.15a) is negligible, although the

instabilities that are found to exist do remain temperature- and velocity-drlven through the

ratio Moy/Mo operating in (2.15a). The property that these extra-cooled-surface instabilities

exist at any Mach number, and for both 2D and 3D modes, contrasts with the situation for

the less cooled surfaces corresponding to large 7" or to the earlier regime of (2.1), where, in

the supersonic range, instabilities occur only for sufficiently oblique modes directed outside

the wave-Mach-cone: see (c) below. Thus the cooling now destabilizes a range of previously

stable viscous modes. Moreover, the de-stabilization is very marked, for all the viscous

modes, in the sense that the spatial growth rates produced are much larger than encountered

before. Indeed, the growth rates appear to exceed those of purely inviscid modes (see also

section 5). The small-_" response leads on to the new structure investigated in section 4.

(c) Large 7" and the cut-off

The clue to the behavior at large r, associated with less cooled surfaces, is found in

high-frequency properties. Thus when f_ is large, at O(1) values of r first, the outer solution

of (2.15a) takes the form

[p,P,A,a,I_,Mo] = [f, lb, ft-'/3Jt, f2_/3&,f_2/33,0(n-'/sftl/')] +..., _= _2-2/3_3, (3.12a)

concentrated again near the wall. So 16satisfies the equivalent of (3.10a), subject again to
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(3.10b,c). Here however the sublayer relation is simply

P/ i = a-1(1 + -1, (3.12b)

as [_0[ is large for these high frequencies. Hence we have the result

= (F(¼))4/3/(2_T) 2/3, (3.12c)&

for the 2D example [the 3D version has an extra factor (1 +/_2/&2)-1/6 on the right-hand

side], giving neutral stability at leading order. This result is essentially an inviscid one since

the asymptote -_o for Ai'/_ in (3.10d), used in (3.12b), corresponds to an inviscid limit,

and, like that in (b) above, the present result applies for all Mach numbers.

Closer inspection then shows that the high-frequency structure and results (3.12b,c)

continue to hold for all % provided that _ >> _.-4/5 and fl >> r, the former to keep [_0[

large and the latter to keep a large (and _ small), as supposed above. The former restriction

is associated more with decreasing r since (b) comes into play exactly when fl reaches the

order _.-4/5 and thus provides a match. The other restriction is connected with the large-7"

behavior below. Also, we note that higher-order contributions in inverse powers of _/bring

in the second term in Ai'/_, which is a viscous and de-stabilizing effect, such that there

exists instability for any value of % at sufficiently high frequencies.

To complete the picture at large % then, we move on to consider fl values of order _-

(Figure 4). The properties are mainly inviscid again since ]_0[ is large, in fact comparable

with fl, as

r ,,, fl_- with a, fl = O(1), F= O(1), (3.13a)

to leading order. The dominant equation to solve is therefore exactly (2.15a), with the

constraint (2.15b) still, but (2.15c) becomes

2 2
,-_ P[1 - -_+a(a 4- fl2)_/2] as y-_ 04-, (3.13b)

because the sublayer response gives here _A = (v__ + fl2)P/a. The computed solution of

(2.15a,b) with (3.13b) is presented in Figure 4(a) along with comparisons with the compu-

tations of section 3(a) and the solution from (3.12). At small _', corresponding to reduced r

and/or larger _ values, there is a match with (3.12) as expected, for any Mach number. Fig-

ures 4(b,c,d) show solutions from the computations of section 3(a) for large r with M_¢ = 2

and _ = 0. In Figures 4(e,f,g) we show _" as a function of fl along the neutral curves for

M_ = 2 andl3= 0,1,1.5, as shown in Figure2(b). We see that for the branchr >> 1

and fl >> 1 "7-decreases as fl increases so there will be a cut-off value of _" above which no

unstable solutions exist. As _" increases the solution becomes Mach-number dependent, and
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this is especially so at large "7"where the subsonic realm remains always unstable but the

supersonic realm becomes stable within the wave-Mach-cone fl < a(M_ - 1) x/2, including

the 2D case. The cut-off here, for the less oblique supersonic modes, is profile-dependent

but occurs at an O(1) crossover or neutral value of 9. That yields the predictions (in line

with the computations just mentioned and with those of Figure 2)

fl-neutral o¢ r / asr--*o% (3.14a, b)

-- max o¢ r J
for Moo > 1 and waves directed inside the wave-Mach-cone. This behavior is illustrated in

Figure 4(h) where 12 - max is plotted as a function of r for fl = 0 and Moo = 0.5. The

frequency _ = _/- max is that at which the maximum growth rate occurs. In contrast,

analysis for the more oblique supersonic modes and for the subsonic ones shows that at large

r the outer solution develops a double structure, leading to the typical response

~ (1 - M£)'/4/_ '/2, (3.15)

for the 2D subsonic case for instance. This confirms the suggestion of the computations,

that the result (3.14b) in fact holds for all the supersonic and subsonic modes, whereas the

subsonic and more oblique supersonic ones retain instability at large "7"(i.e. fl << r), as

opposed to (3.14a).

The double structure just mentioned leads to the final phase for the latter modes, namely

when f_ falls to O(r-1/2). Then [_0] decreases to O(1) since

(a, fl) ~ "r-a/4(ot.,fl.) with gl ~ r-'/2_., (3.16)

from (3.15), with a,, _,, _, of order unity, so the fully viscous suhlayer relation (2.15d) is re-

installed. Moreover, the outer double structure produces the two _-scales O(r s14) and 0(1),

the former giving a potential-flow character and the latter a profile-dependent displacement

effect, leading to the relation P = a.AT -3/4 (1-M_) -1/2 for subsonic 2D modes for instance.

Coupling this with (2.15d), then, we obtain the eigenrelation

_(_¢o) ,. ,,,/s (1 - M_) '/2 (3.17)

There are two main pointsbetween c_., gl., again for the 2D subsonic case as an example.

here. First, the relation (3.17), which agrees with (3.15) at large fl. as required, produces a

maximum growth rate at an O(1) value (approx. 4) of n. and neutral stability at a smaller

0(1) value (g_. approx. 2.3), thus giving rise to the predictions

- neutral .._ r-'12 ! as r --_ oo. (3.18a, b)

- max _ r -112 J
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These again appear to be consistent with the computations at large % as shown in Figure 4(i)

where _-rrmx is shown as a function oft for fl = 0 and Moo = 2. Second, the entire structure

in this regime, and the results (3.16) - (3.18), match directly with the earlier triple-deck case

(see (2.1)). For instance, the wavelength O(ne-t/2a -') increases to O(Re -a/s) when T_o is

raised to O(1), since then T,o o¢ T1/2 _ 0(Re ,/'2) and ct --} O(Re -'/s) from (3.16). Similar

matching holds with regard to (3.17), (3.18), for 2D and 3D subsonic or supersonic modes

(Smith 1987).

The splitting of the neutral curves for the different cases, and the production of tw____oolocal

maxima (and mounds of instability)in certain cases, via (3.14), (3.18), reflects the emergence

of two major types of instability when the surface temperature increases. These are the

viscous-inviscid triple-deck type (of (2.1) if), with which (3.18) connects [see comments

above], and the inviscid compressible-Rayleigh type, which are implied by (3.14). In the

latter case, raising T_o back to O(1) corresponds to T,o increasing to O(Rea/X2), hence _-

to O(Rel/S), and so the 9t's in (3.14) become O(Re l/s) also, meaning that the time scale

t becomes O(Re-:X/2), from (2.8). This t-scale, the x-,y-scales of order Re -_/2, and the

increased wavespeed of order unity, all coincide with the compressible Rayleigh scales : see

also section 5.

Finally here, a combination of the small-r features in (b) above and those for large r in

(3.14) indicates the existence of an O(1) value of the effective surface temperature at which

Fl-neutral is a minimum, for the supersonic 2D and less inclined 3D waves. This is as shown

in the figures. The corresponding Fl value in the 2D case for instance represents a critical

value of the scaled frequency, below which 2D modes remain stable, in supersonic flow, and

above which they are unstable for a range of surface temperatures.

4. THE SEVERE-COOLING REGIME

This regime has much reduced surface temperatures and its structure is inferred from the

properties found in section 3(b). Thus for small r the characteristic thickness of the outer

tier deceases like _.e/s, as does the streamwise length scale, while the buffer thickness which

is proportional to T_ decreases like r in view of (2.12a). Along with this, the representative

viscous-tier thickness falls as a-X/3Tw because of the scaling in (2.7) and the definition of

_0. The unscaled thicknesses are therefore of the orders Re-1/2T6/s, Re-2/3-r, Re-3/4rg/l°

respectively.

The severe-cooling regime arises when any two of the last three thicknesses mentioned be-

come coincident. For instance if the buffer thickness coincides with the viscous-tier thickness

then r ,,_ Re -s/e, giving

T_, ,._ Re -1/2 (4.1)
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as the typical surface temperature here. At that stage the other thickness above also becomes

comparable with the other two, and so a single-tier structure is expected to apply for severe

surface cooling. In effect the original main tier and buffer layer now enter the viscous

sublayer. The corresponding streamwise length scale is O(Re -3/2) which is relatively tiny

and coincides with the inner-tler thickness where V " Re-a�2 and viscous compressible effects

are felt. The corresponding velocity, pressure, temperature, density and viscosity scales can

be worked out likewise. The resultant governing equations for the severely-cooled flow are

in effect the unsteady compressible Navier-Stokes equations,

p, + (pu).. + (pv), + (pw)_ = 0, (4.2a)

v0,+ = -p. + + (#'- + + + +p[O_ 4- U_z +

(4.2b)
2

;[O,+ uO.+vO,,+ wOAv = -p,+0,[2_v,+(_'-_)V.V_]+0.[_(v,+w,)]+0.[_(u,+ v_)], (4.2c)

;[0, + _O_ + _O, + _0.]_ = -V. + 0.[2_. + (_'- _)V.£] + O_[,(_. + _.)] + O,[_(,, + _,)],

(4.2d)

p[Ht 4, uHx 4- vHy 4- wH_] = V.(k gradT 4- T_u), (4.2e)

1 2 v 2
H= 5(u 4, 4, w 2) 4-p, II= CT, p= T_pT, (4.2f, g,h)

where H is the enthalpy, _ is the stress tensor and a is the Prandtl number. Here again

the nonlinear interaction is set up first, with small perturbations then being governed by

the linearized version. The basic undisturbed flow has u = T_c2ei'l[(1 4- 2cly) _/2 - 1] and

T = T,_(1 4- 2c_y) 1/2, as in (2.3)in effect, and the boundary conditions on (4.2) include

u=v=w=0, T=T,_, aty=0, (4.3a)

u -,_ 5b_c---2[(14- 2c_y) _/2 - 1], T ,-, _b_(l + 2c_y)_/2, p .._ O, as y _ oo, (4.3b)
Cl

where T_ is the scaled surface temperature.

The main difference from the previous cooling regime is that the viscous Navier-Stokes

motion is now fully compressible (and single-structured), contrasting with the quasi-incom-

pressible sublayer properties holding before. The scales involved are extreme but they can

be verified from an order-of-magnitude argument. Further, the present flow structure applies

for any Mach number, in line with the closeness of the Navier-Stokes structure to the surface;

and both the spatial and temporal growth rates induced for small perturbations are an order-

of-magnitude larger than those found previously for inviscid modes, because of the tiny scales

involved here.
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This new predominanceof the viscousmodesis duephysically to the high surfaceshear

stressesand surface heat transfer rates that the cooling of the surface provokes. The

samecomment applies to section 3(b). The precisebehavior is of course dependent on

the temperature-viscosity law in operation (unlike the law-independenttriple-deck caseof

(2.2)), but the samequalitative behaviorseemslikely to hold in general,for the samephysical
reasons.Linearized or nonlinear solutions in this regime could therefore be of some interest,

as 55_, is varied.

5. ON INVISCID MODES ON COOLED SURFACES

The pure inviscid stability of compressible boundary layers is controlled by the compress-

ible Rayleigh equation

_,, 2_'- 52(1 - + 0, (5.ia)

for the pressure perturbation, with the length scales as for the main tier in section 2 but

now the wavespeed c is O(1), so that

"M - (Uo - c)MooTo 1/2, (5.1b)

cf. (2.15a). The boundary conditions are to match with the undisturbed incident free stream

and to satisfy the tangential-flow surface condition,

_ 0 [or outgoing waves] as y ---, 0% (5.1c)

= 0 at g = 0, (5.id)

respectively. Computational solutions of (5.1) are given by Mack, Malik and others (see

references in §1) including some investigations for cooled surfaces. The investigations trace

the effects of gradual cooling on the originally un-cooled inviscid modes and find some inter-

esting features. There is no significant change of scale however. The present investigation

focuses mostly on new inviscid modes involving substantial scale changes and, in particular,

much increased growth rates.

The main factor for cooled surfaces where T_, is small is the development of the O(T_)

sublayer described by (2.3), associated with high wall shear and temperature gradient. The

previous investigations mentioned above neglect the sublayer in a sense and seek solutions

of (5.1) on the scale _ of O(1). Here, in contrast, we find significant effects arising when the

sublayer plays an active role. We concentrate now on the two-dimensional case.

The first type addressed has c >> Tl_/2 and a2c _ _ T_ 3. This is suggested by the form

of M in the sublayer, namely O(T_/2) - c times O(T(,, _/_) from (5.15) with (2.3a), and by
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the balance of terms in (5.1a). So M is large in the sublayer and (5.1a) reduces to

k2 _p"+ + _ = 0, (s.2_)
Y

where _# = !) 4- (2ci) -I, the parameter k -- acM_(2cl)-I/4T 3/2 is O(I) and ci is the heat-

transfer factor defined in (2.3b). Here (5.2a) becomes Airy's equation in terms of the variable

s = y and so the constraints (5.1c,d) lead to the eigenrelation

-2iAi(-(4k2) 1/a) + Bi(-(4k2) 1/a) = 0 (s.2b)

for k. This has no real roots. All the (complex) roots give damped waves in fact, but this

type of mode serves to suggest the new scales for the second type of surface-cooled mode.

Here c reduces to O(T_/2), and a ,,_ T_ 2, as implied by the first type, and this brings in a
-1/4

I/2- T_ _& then _1' oc ynew effect since now _/_ is of order unity. Thus if c = T_ c and c_ =

to leading order and (5.1a) becomes

for arearthesubstitutiony = e"M_/(8c,)_/_+_/(2a'/_)converts(S.3a)tothe?araSolic
cylinder equation

]2

_,,- (¥ - _)p = 0, (5.3b)

where fl = &_'M_/(8c_) and the boundary conditions are p(oo) = O,dp/d_ = 0 at _ =

(2-_2M_)&l/2/(2cl) _/2. The solution is therefore the parabolic cylinder function _ = U(a, _)

with a = -_ (see Abramowitz & Stegun (1964)), for the outer constraint, while the inner

constraint requires that .l = z,_ where _,_ are the roots of

u'(.,_,,)=o. (5.3c)

The above reference shows that there do exist some roots with a being negative,/_ positive,

as required, occurring for positive z,_. For those roots the values of &, t then follow from the

relations

(2 - a2M_)a'l'l(2c,)'l_ = z,,,

ae'M'_/(9.c,) = 4L

The resulting wave speeds _ are all real, given by

(5.4a)

(5.4b)

&t/_. = (_/2 + :r,,,12)(2c_)1/2, Moo_ = 2(2 + z,,//31/2) -_/2, (5.5a, b)
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where the first equation fixes &, the second _. Hence this new type, which is a temperature-

driven mode because of the form of M, produces new inviscid neutral modes.

The third case has c decreased still further, to O(T,,,), which reinstates the influence of

the velocity profile U0 as well as the temperature at leading order. For, if c = T,_, a = T,_2&,

then .M = T_/_.M is small and the controlling equation becomes

-- I

_,, 2M- --_-_' - _1_ = 0,

= [(yl 1/2- 1)2),1- _]M_y1-1/4.

with

(5.6a)

(5.65)

(Here Yl =--2c1_1, & ------2clal, 2cl),1 -- c2). This can be recast, by setting yl 1/2 =/2(1 + _),/2 =

1 + t/2),1, in the form

_p_e - 2_e - ¢2_(_ + 1)2/_ = 0, (5.6c)

with

p(c_) = 0, 15e= 0 at _ =/_-1 _ 1, (5.6d)

where ¢ - 2al/2 2 acts as the eigenvalue. This third type can be shown to match with the

second type, at large t, _, and similar matching occurs between the first and second types.

Hence again in this regime neutral modes are produced.

The fourth type of cooled-surface invlscid mode to consider has a structure suggested by

the work of section 3(c). Here c is reduced to O(T_) but a is O(1), and the solution of (5.1)

takes on a three-tier form. In the bulk of the boundary layer where y is O(1), therefore,

(5.1a) applies but with c replaced by zero in the definition of M in (5.1b), i.e. (2.15a) holds

again with M0 = UoM_/TJ/2, and now

2 2 -**_.--,3_2 --

,-_P- _a A y ' asy--_0+, (5.7)

where the relation between the constants A** and P has to be found. The next tier, closer

to the surface, has _ = T_ along with (2.3), so that to leading order

_= TS/_M(_) : M _ _[(1 + 2c_t)_/_- 1]M_
ci(1 + 2c19)I/4 (5.8a)

-- 3
p = P + T_pl +...

Now

(5,85)

and consequently the first two terms in (5.1a) dominate, giving on integration

dpl a2 A** c_/2

d--_"= ,_9112_,_2_Ar2_2/I_/2' (5._c)
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wherethe coefficient on the right side is chosen to match with (5.7) and we normalize such

that pl(0) = 0. Hence dpl/d_ decreases like _s at small _, which leads on to the lowest tier

even closer to the surface where _ = _y with _ of O(1). There

6_

_= P + T:pl +'", (5.9a)

and the small wavespeed c = T_ takes effect since

3/2 -M = T_ M +... with ]fl= (c2fl - _)Moo, (5.9b)

from (5.1b) with (2.3a). Hence the governing equation, from (5.1a), is

2 d$ _
- _¢ dfl dfl a2P" (5.9c)

The solution for d_l/d9 merging with (5.8b,c) at large _) is then

a2 A** c_/2
d_ a2P (c2fl - _) -. (c29 - _)2, (5.9d)
dfl - c2 21/2c_

and so the required surface condition (5.1d) is satisfied at 9 = 0 if

A** 21#C2P (5.10)

- c_/2_--.

This provides the relation for A**, to be substituted into (5.7). The resulting problem for p,

that is, (2.15a,b) with (5.7), (5.i0), is equivalent to the one derived and solved numerically

in section 3(c): see (3.13b), where the parameter q-a 3 involved for the two-dimensional case

is in agreement with that inferred from (5.7), (5.10), with account taken of the different

temporal scaling in (2.8). Hence the stability properties in subsonic and supersonic flow, for

this fourth type, are exactly as given in Figure 4 with the appropriate change of notation.

Like all the types described in this section, this new type appears to be quite distinct from

any cooled modes found previously.

6. FURTHER COMMENTS

The main conclusion from the present theoretical research [in particular, §§3,5] is that

moderate surface cooling can enhance the TS viscous-mode activity to the extent that the

spatial growth of the viscous modes can become comparable with, or even exceed, that of

inviscid ones, thus reversing the normal order. In addition, the cooling can completely desta-

bilize otherwise stable viscous modes and inviscid modes, at any Mach number, including the

production of radiating waves in the supersonic realm. In those two senses, then, cooling of

the surface seems very "dangerous" with regard to transition in the compressible boundary

layer.
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The TS growth, when it exceeds that of the pure inviscid modes studied previously,

occurs for disturbances which are confined relatively close to the surface, as opposed to the

full inviscid ones stretching all the way across the boundary layer. In particular, for all

the new modes, the high-heat-transfer sublayer plays a substantial active part in enhancing

the viscous growth, through the correspondingly high shear-stress production at the surface.

It could be for that reason, i.e. the appearance of multi-structured responses within the

boundary layer, that previous theoretical, computational and experimental studies of surface-

cooling efl_ects appear to have not detected the new mode properties, although there are other

explanations which suggest themselves such as considerable finite-Reynolds-number effects;

see also below. Experiments and computations focusing on the possibility of such strong near-

surface behavior remain to be done, it seems, and they could be of much interest scientifically

and for practical applications. There is some me_sure of agreement, nevertheless, between

the present theory and the Lysenko and Maslov (1984) experiments. Thus the theory predicts

that as the temperature ratio T_ fails from the non-cooled regime to the moderate-cooling

regime, for first modes at fixed Reynolds number, the typical streamwise wavenumber, a D

say, and the typical frequency, w D say, increase as T_ 3/2, T_, 1 respectively: see §2. So for the

1 to 0.76 decrease in T,_ examined in Lysenko and Maslov's Figure 2 the predicted increase in

wD is by a factor 1.316, which is not inconsistent with the measured increase in the neutral

value of w D shown in that figure. (See also comparisons for the insulated case in Smith

1987). Similar trends for decreasing T_ are observed in their Figure 5. Again, Lysenko and

Maslov's Figure 4 has a case of a 1 to 0.79 decrease in T_, for which the present theory

implies an increase by a factor (0.79) -_/2, i.e. 1.398, in the corresponding spatial growth

rates -a_. This also is not inconsistent with the measured growth curves in their Figure 4.

Hence as far as their Figure 4 is concerned there appears to be some agreement both on the

delay of instability and on its increased growth rates, with cooling of the surface, although

their interpretation (see their figures) is that the growth rates in fact decrease. The latter

would seem to be due to extra normalization factors used, whereas the theory indicates that

the effects of the temperature ratio Tw should be the overwhelming ones eventually, as T_

falls.

A further note of caution should be added here, concerning nonparallel-flow effects. We

recall that, strictly, supersonic first modes within the wave-Mach cone are stable and gov-

erned at leading order by nonparallel-flow effects, for T_ of order unity (Smith 1987). There-

fore the experimental results (of Lysenko and Maslov (1984), and others) inside the wave-

Mach cone could well be influenced to a significant extent by nonparallelism rather than being

true instability measurements, and they may in turn miss the new supersonic instabilities

predicted for cooled surfaces.

22



The corresponding nonlinear processes at higher disturbance amplitudes which are noted

earlier in the text should also be of much interest with respect to transition in the cooled

boundary layer. For example, the nonlinear break-ups described by Smith (1988) then be-

come attainable within finite time; and forms of vortex-wave interaction can also be induced,

including those of Smith & Walton (1989) and Hall & Smith (1989). As well as the nonlinear

problems mentioned in the text, that inferred from section 3(c), for reduced surface tem-

peratures, is governed by the three-dimensional unsteady boundary-layer equations coupled

with the pressure-displacement law which is given in transformed terms by (3.5b). This can

be expressed as an integral relation between the unknown pressure and displacement, in two-

dimensions or three-dimensions. Further, the finite time for nonlinear break-up referred to

above becomes shorter as the surface is cooled, suggesting that intermittency (see references

above) may arise that much sooner on a cooled surface.

There are many other regimes of concern. These include the hypersonic realm with its

strong vorticity mode (Brown 8g Smith 1989); the transonic realm and its peculiar instability

features (Bowles 8z Smith 1989); cross-flow effects; upper-branch properties, e.g. between

the mounds of instability discussed in section 3(c); other temperature-viscosity laws, given

that the Chapman assumption is vital in the new near-surface layers, although again other

laws of concern seem likely to induce broadly similar behavior; and the upstream-influence

analogue which is currently being considered. These additional aspects seem less significant

in the long run, however, than the issues associated with nonlinearity, given the increased-

instability properties found here for cooled-surface boundary layers.
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Figure 2(a). Neutral value of r versus frequency _ for Moo = 0.5 and t]/a = 0, 1, 2, 4.
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Figure 2(b).
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Figure 2(b). Neutrsl value oft versus frequency 12 for M_ = 2 and _/a = 0, 1, 1.25, 1.5, 1.75.
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Figure 2(c).

35--

O_

3O

25

2O

15

10

5

0 5 10 15

Figure 2(c). Neutral value of a versus frequency F_ for M_¢ = 2 and _/a = 0, 1, 1.25, 1.5.
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Figure 2(d).
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Figure 2(d). Growth rate versus frequency fl for Moo = 0.5, fl = 1 and 7"= 0.1, 0.05, 0.02.
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Figure 2(e).
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Figure 2(e). Growth rate versus frequency l_ for M= = 2, _ = 1 and r = 0.1,0.05, 0.02.

31



Figure 2(f).
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Figure 2(f).Growth rate versus frequency £tfor Moo = 0.5,/3= 0 and 7"= 0.4,0.5,1.
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Figure 2(g).
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Figure 2(h).
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Figure 3(a).
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Figure 3(a). Asymptotic solution for Re(a) from (3.11c) for r << 1 versus frequency fl for

fl = 1 and r = 0.1,0.05,0.02.
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Figure 3(b).
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Figure 3(b). Asymptotic solutionfor -Ira(a) from (3.11c)for r << i versus frequency ft

for/3 = I and r = 0.1,0.05,0.02.
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Figure 3(c).
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Figure 3(d).
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comparison.
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Figure 4(b).
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Figure 4(b). Re(a) as a function of frequency fl for M_ = 2, fl = 0 and r = 1,5,10, 17.
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Figure 4(f).
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Figure 4(g).
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Figure 4(h).
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Figure 4(i).
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